## Tiops Simulation, Part I: <br> Simulation of Orthodontic/Orthopedic correction in the growing patient.

One of the most valuable features of the TIOPS program is the ability to aid the clinician in simulating treatment. This feature is a great help in treatment planning as it provides a means of obtaining a clear idea of the treatment possibilities and the needed dental movements as well as the anchorage needs in a specific patient.

## Start up the Procedure

1. The process of simulating a patient's treatment requires at a minimum a digitized and saved Lateral Analysis. A superimposed lateral facial photo as wells as upper and lower occlusograms will add further information as these components will be included in the simulation. The simulation process is initiated by opening the patient file and then selecting the stage to be the reference for the simulation.
2. To create or add a New Simulation to a Patient's File hold and press



What you see on the computer screen is not the final treatment plan, but at starting point for the planning process.
As the first step in the simulation process, the program has as a default added 24 months of facial growth based on the age, sex and the morphology of the patient. This includes the amount of growth rotation of both maxilla and mandible.
As the second step the lower incisor is placed by the program in an average position, with respect to the incisal edge and inclination. This is not to be considered the final position for this tooth but acts only as a starting point for the

This opens several simulation options under the heading Simulation1 and automatically creates a new Simulation seen in purple on the computer screen. Alternatively you can click the New Simulation Button located on the menu bar or use the Simulation pull down menu and click Add Simulation.
 simulation. Then the dentition, represented by the incisors and first molars, is positioned as in a virtual set up in normal or Class I occlusion as seen on the general superimposition as well as in the separate maxillary and mandibular superimpositions in the right panel that shows the actual tooth movements within each jaw.
The simulation does not provide a final treatment plan, but is a graphical workspace where the clinician can test different treatment strategies. When the individual treatment parameters are altered, the program immediately recalculates the changes and the illustrated simulations change accordingly.
We suggest that you use this process to test one or more preliminary treatment plans for a given patient and change the parameters you think are important for the particular treatment you have in mind. As you proceed the process will make you consider most of the treatment parameters that are important for that particular patient.

## Proceed ....

3. In the Data Input Panel on the left side of the screen move down to the field labeled Type and click on the arrow to open up a selection of options that include Ortho, Growth and Surgical. The Ortho option includes simulation of Orthodontic/Orthopedic correction in growing or non-growing patients. To change the selection click on the appropriate type or press the letters <0>, <g> or <s> without opening the drop-down list.

If you have made more than one lateral analysis for the patient, make sure to select the appropriate analysis as Reference1. For the Reference 2 item see note 1.

Then proceed to your choice of TreatmentScenario. For each Simulation Type you can choose different Scenario's. For further explanation see note 2.


The field Description is available for inclusion of your own comments or notes.
4. Go to the GeneralData segment and make any changes needed:

Change the value for the simulation Period according to your expected treatment period and the program recalculates the amount of expected growth.

You may now consider changing the GrowthType to suit the individual patient. The options available are based on the structural signs based on the growth studies by Björk, A, 1963. One important parameter is the expected mandibular growth rotation that is automatically calculated in Tiops4 and listed in the Variable View..

|  | Stage1 | Simulation1 |  |  |
| :---: | :--- | :--- | :--- | :--- |
| - PREDICTIONS |  |  |  |  |
| MandRotYear | deg | -2.6 | -1.2 | -1.4 |

The program has built in values for each possible type and degree of growth rotation and places the lower incisors at different relationship to the ss-pg (A-Pg) line (Ricketts, 1957) according to growth rotation

| Simulation1 |  | - |
| :---: | :---: | :---: |
| No | 1 |  |
| Type | Ortho |  |
| Reference1 | 1 |  |
| Reference2 | None |  |
| TreatmentScenario | Activator |  |
| Description |  |  |
| $\square$ GeneralData |  |  |
| Period | 24 |  |
| GrowthType | Anterior | - |
| LoSpaceRight | ExtremeAnt |  |
| LoSpaceLeft | Anterior |  |
| CompensPrinciple | Neutral MediumPost |  |
| AutastricCorr | Posterior |  | type, see Note 4.

5. Space conditions in the lower arch are important values to enter in the box labeled LoSpaceLeft and LoSpaceRight. These numbers should be accurate as they influence the simulation greatly as we will see later.

If you have included occlusograms in the analysis then use the

| $\square$ GeneralData |  |
| :---: | :---: |
| Period | 24 |
| GrowthType | Neutral |
| LoSpaceRight | -1.3 |
| LoSpaceLeft | -0.6 |
| CompensPrinciple | Compensation |
| AutaArticCorr | True | calculated space parameters. For further explanation see note 3 .


|  |  | Stage1 |  | Simulation1 |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SpaceR | mm | -1.3 | 0.0 | -0.7 | 0.0 | 0.0 | 0.0 |
| SpaceL | mm | -0.6 | 0.0 | -0.3 | 0.0 | 0.0 | 0.0 |

The items CompensPrinciple and AutoArticCorr will be further explained in Part 2 of this guide. Do not change the defaults values for now.
6. Now take a new look at the tracings to see what you have accomplished so far! Please notice the separate upper and lower jaw tracings in the right panel are superimposed on their respective reference lines and the tooth movements represent the true movements within the jaws. See below for further details with respect to the automatic sequences used in the Simulation Process:

> The estimated amount of growth is added to the total facial skeleton using the axis from sa (sella anterior) to pg (pogonion) as a guide. The amount is based on the age of the patient, sex and simulation period. The estimated growth and rotation of the maxilla and the mandible is thereafter calculated using the principles from the Björk Growth Studies.
$>$ A further refinement of the estimation of stage of maturation can be obtained by using a hand wrist radiograph and the built in TW2 RUS method (Tanner and Whitehouse, 1975, 1983). You may also enter the Skeletal Age, obtained from a different type of maturation analysis in the field ForcedSkeletalAge under the heading Stage data. This will override the RUS data.
> The lower incisor is then placed with the incisal edge related to the MML (A-Pg) line depending on the GrowthType. The inclination is set to ideal to this line as well, see Note 4.
> The upper incisor is then placed in an ideal (mean) relationship to the lower incisor and in a normal overjet and overbite relationship. The functional occlusal plane is overlapped by 1.25 mm of the upper and lower incisors respectively. The overbite and the overjet are adjusted to 3 and 2.5 mm respectively.

$>$ The next step is the location of the lower first molar that is placed by the program at the initially digitized distance from the lower incisor plus or minus the amount of crowding or spacing per side. As the space estimate is critical for a reliable simulation it can be more accurately determined by digitizing an occlusogram of the lower jaw and then transfer this to the simulation, see Note 5.
> The upper first molar is now placed by the program in a solid Normal or Class I occlusion. The results of these four steps are comparable to a virtual setup of the dentition. From here on the simulation can be further refined as needed to fit the treatment situation as previously explained

Applying the simulation process in treatment planning

First consider the theoretical options for modification of maxillary growth as illustrated. The green markings represent the sutures, the growth sites.

7. In the segment labeled Orthopedics you should enter values for each treatment option as appropriate. Here are some suggestions:
$\square$ Orthopaedics
MaxSaglnhib 50
MaxSagStim 0
InducMaxRot 0
MaxRotCent pm
MaxVert|nhib 75
MaxTransStim 3
MandSagStim 0
8. If you plan to use an Activator in treatment of a Class II malocclusion we suggest you put an estimate of $30-50 \%$ of restrain on the predicted amount of maxillary sagittal growth in the field labeled MaxSagInhib. This will reduce the amount of forward maxillary growth simulated and is what is generally seen in activator treated cases. When using skeletal anchorage the inhibition might reach as much as $100 \%$.
9. Maxillary Sagittal Stimulation is used in cases where a protraction headgear is planned. Enter the expected amount of advancement in mm .
10. If you expect that during treatment you will have some downward rotation of the Maxilla then enter the amount in degrees, but be conservative. The center is in most cases located in the posterior nasal spine area, pm/(PNS). However, if you are using a reverse pull headgear it may be at sp (ANS). In most instances the rotation of the maxilla will induce an unwanted posterior (counterclockwise) rotation of the mandible, so it is desirable to reduce this tendency as much as possible with the correct treatment mechanics.
11. In the field MaxVertInhib you can enter the percentage of the expected vertical inhibition when using a HP headgear, skeletal anchorage or similar. If you have no idea of the amount, leave it blank.
12. The option MaxTransStim provides the possibility of expanding the maxilla. Entering 1 mm will expand the upper arch with 1 mm at the molars and 0.66 mm at the canines. You can follow this on your upper occlusograms if included in the analysis/simulation. For each mm of expansion there is 0.25 degrees of induced opening (Posterior rotation) of the mandible built into the program so an accurate estimate of the need for expansion is important to get a realistic simulation. If you don't agree with this adverse effect of the expansion you may counteract this by entering some negative value in the box InducMandRot (See later).
13. The item MandSagStim (in mm ) is provided for users of the Herbst, Forces or Jasper Jumper appliances.

It is important to remember that once the lower incisor and molar have been digitized they are linked together and will move as a unit when you change the incisor position or changed the space conditions. If you add values in the simulation for either crowding or spacing in the lower the arch the molar will move back or forward accordingly, whereas the incisor is locked in place and does not change position unless you move the whole lower arch backward or forward using ArchesSagAdjust. Anytime you change the lower arch position the upper arch follows these changes as you will see on the maxillary superimposition in the right panel as it maintains the normal molar occlusion. Another choice that affects the lower molar position is extraction of teeth in the lower arch that similarly affects the position of the molar only.
14. Until now we have not discussed the standard placement of the lower incisors determined by the program itself. The superimposition of the original head film and the simulation, seen below, shows that according to the stage of maturation of this patient and the information from the cephalometric analysis a downward forward growth trend is anticipated for the next 24 months with a greater than average degree of anterior growth rotation of the mandible. The transverse expansion of the upper jaw, needed in this patient, has induced a 0.75 deg. posterior rotation of the mandible. (explained previously)

obtain normal occlusion. In the segment labeled ArchChange three possibilities are now available for correcting this rather difficult tooth movement:
15. First, the lower incisors could be moved forward 4 mm by entering 4 in the ArchesSagAdjust field. This will move the upper molar forwards towards their original mesio-distal position. However, this might place the lower incisors in an unstable position with an increased risk of relapse and periodontal problems long-term.
16. Second, you may instead consider expanding the upper and lower arches transversally. A value entered in the ArchesExpansion box will expand upper and lower arches with the same amount. 1 mm of expansion (at the first bicuspids and the molars as well) will provide extra space in the lower arch of ca. 0.95 mm . Notice that the lower and upper molars move forward simultaneously and take up the space made available while the lower incisor position maintained.
Negative values can also be entered in case of constriction of the arch width.
17. Third, another option to consider is extraction of teeth. In the sub-segments:
LowerExtractions and UpperExtractions your extraction decisions can be entered.

For the he individual teeth there are three choices: Erupted, Missing or Nonerupted. To extract a tooth click on Missing (or press <m>) and move to the next tooth you wish to extract. Then do the same in the Upper arch to complete the extraction process if you are planning a four bicuspid extraction treatment.

Click on Nonerupted if you will make space for a missing

| $\square$ ArchChange |  |  |
| :---: | :---: | :---: |
| ArchesSagȦdjust | 1 |  |
| ArchesExpansion | 3 |  |
| $\square$ LowerExtractions |  |  |
| 16 | Erupted |  |
| 15 | Erupted |  |
| 14 | Erupted | $-$ |
| 13 | Erupted |  |
| 12 | Missing | ns |
| 11 | Erupted |  |
| 11 | Erupted |  |
| 12 | Erupted |  |
| 13 | Erupted |  |
| 14 | Erupted |  |
| 15 | Erupted |  |
| 16 | Erupted |  |
| $\pm$ UpperExtractions |  |  |
| InducMandRot | -1 |  | tooth.

As you enter the extraction command the molars will move forward and take up the space made available while the incisor position is maintained, see Note 5 . To answer the question "first or second bicuspid extraction?" look at the molar movements on the superimpositions for what is most appropriate for your patient.
From this it can be determined how much molar movement is needed to maintain the incisors in the decided position and how much anchorage, especially in the upper dental arch, is needed to achieve the treatment goals.
8. Now consider the field InducMandRot. This item is an important one concerning the treatment induced effects on the mandibular inclination (rotation). Could treatment possibly result in an undesirable backward mandibular

| $\square$ ArchChange |  |
| :--- | :--- |
| ArchesSagAdjust | 1 |
| ArchesExpansion | 3 |
| $\pm$ LowerExtractions |  |
| $\pm$ UpperExtractions |  |
| InducMandRot | -1 | rotation? If this is a possible scenario then a simulation with this change should be made to determine the resulting tooth movements and anchorage requirements....

Here we have chosen to be optimistic by entering the value of -1 , which will produce this result:


The amount of treatment induced mandibular rotation is one of the most difficult factors to estimate, something you will recognize when analyzing your own treatment results. Don't be too discouraged as unwanted posterior mandibular rotation happens to even your most experienced colleges!
19. One of the final steps in the simulation process is to adjust the inclination of the incisors and molars to realistic inclinations. As the program moves the teeth in a linear fashion it is necessary that an experienced clinician makes adjustments to the inclinations so that the final tracing shows meaningful movements of these teeth.

20. In this patient the lower incisor needs to have
 the root moved back towards the original position to a more realistic inclination. The upper incisor root may then be moved forward toward the original position of the apex which will ease the Activator treatment without compromising the inter incisal relationship.

Notice that root movement towards the labial is indicated as
 a - value (degrees) to the lingual as a + value (degrees).
21. The item OlfAdjust is used to make the necessary treatment induced changes of the inclination in degrees of the occlusal plane. In this case the activator will probably induce some posterior rotation centered at the molars, see Note 6.
22. The item OlfVertAdjust is used to make the treatment induced vertical change in mm of the occlusal plane. Such changes may be generated by use of skeletal anchorage.
23. Below is the final result:


## NOTES

Note 1:
In case you have performed a Growth Analysis (GA) by superimposing two successive stages, covering a certain time period without treatment, the simulation process uses the actual growth amount instead of the growth standards built into the program

Note 2:
Under tools/environment options... /Simulation/TreatmentScenarious you can enter the default parameters you wish to use when you begin the simulation procedure and have chosen a specific scenario.


| Simulation1 |  |
| :---: | :---: |
| No | 1 |
| Type | Ortho |
| Reference1 | 1 |
| Reference2 | None |
| TreatmentScenario | Activator --------- |
| Description |  |
| $\square$ GeneralData |  |
| Period | 24 |
| GrowthType | Neutral |
| LoSpaceRight | 0 |
| LoSpaceLeft | 0 |
| CompensPrinciple | Compensation |
| AutastricCorr | True |
| $\square$ Orthopaedics |  |
| MaxSaglnhib | 50 |
| MaxSagStim | 0 |
| InducMaxRot | 0 |
| MaxRotCent | pm |
| Maxivertlnhib | 50 |
| MaxTransStim | 3 |
| MandSagStim | 0 |

Note 3:
The result of the simulation procedure is that the space condition in the lower arch is equal to zero. If you add values in the simulation for either crowding or spacing in the lower the arch the molar will move back or forward accordingly.

Note 4:
This table shows the initial placement values for the upper and lower incisors relative to GrowthType as used by the program.
Point cp is the intersection point between MML and OLf.
By significant movement of the Upper Incisor and resulting remodeling of the landmark ss the Lower Incisor will appear more prominent.

| GrowthType | IncLoInc-cp | Lolnc/MML | UpInc/MML |
| :--- | :---: | :---: | :---: |
| ExtremeAnt | 3,50 | 27 | 33 |
| Anterior | 2,50 | 25 | 31 |
| Neutral | 1,50 | 23 | 29 |
| MediumPost | 0,75 | 21 | 27 |
| Posterior | 0,00 | 20 | 26 |
| Unit | $\mathbf{m m}$ | $\mathbf{D e g}$ | Deg |

Hold
and press
Alt
will return you to the original location in this document

## Note 5:

The displayed upper and lower molar can represent either the right-side ones or the mean of the right and the left molars. If you wish to see both molars the left molar can be included from the start by using the RightLeftFron regimen or added by the procedure in Digitize/Add/Remove Structures after changing the regimen to RightLeftFron or Complete.

If both (right and left) molars are included the LoSpaceLeft and LoSpaceRight values will be used to place the molars according to the particular side.

If you do not include both molars the two values for the space conditions left and right will be divided evenly. Similarly, the molar on the lateral tracing will only show a movement when right side extraction is entered, but is of course seen on the occlusograms for both sides.

## Note 6:

The occlusal plane can be rotated at these centers:

| $\square$ Toothidjustment |  |
| :---: | :---: |
| Olfadjust | 1.5 |
| OlfididustCent | mop |
| OlvertAdiust | mod |
| LolncAdiust | pop ${ }^{\text {Pra }}$ |
| Uplncidjust | ope |
| lower molar |  |
| lower bicuspid |  |
| oint of the occlusal plane on the tracing |  |
| point of the occlu | plane on the tracing |


| OcclusalPlane | pop | Cusp tip of the first lower molar |
| :--- | :--- | :--- |
| MolarOcclPoint | pop | Cusp tip of the first lower bicuspid |
| BicuspidOcclPoint | opa | The anteriormost point of the occlusal plane on the tracing |
| AnteriorOcclPoint | opc | The posteriormost point of the occlusal plane on the tracing |
| CaudalOcclusanPoint |  |  |

